Roll No: \square

BTECH

(SEM IV) THEORY EXAMINATION 2021-22

ENGINEERING MECHANICS

Time: 3 Hours
Total Marks: 100
Note: Attempt all Sections. If you require any missing data, then choose suitably.
SECTION A

1. Attempt all questions in brief. $\quad \mathbf{2 \times 1 0}=\mathbf{2 0}$

Qno	Questions	CO
(a)	State the principle of transmissibility of force.	1
(b)	What is a free body diagram?	1
(c)	List the assumptions used in the analysis of a truss.	2
(d)	Define point of contraflexure. In what type of beams this point occurs.	2
(e)	What is the importance of axis of symmetry in determination of centre of gravity of a body?	3
(f)	Explain the term radius of gyration	3
(g)	What do you mean by general plane motion?	4
(h)	Find the work done in pulling a weight 500 N through a distance of 5 m along a horizontal surface by a force of 200 N, whose line of action makes an angle of 30^{0} with the horizontal.	4
(i)	Differentiate between resilience and toughness.	5
(j)	What do you understand by term pure bending?	5

SECTION B

2. Attempt any three of the following:

$$
10 \times 3=30
$$

Qno	Questions	CO
(a)	A lever is hinged at C and attached to a control cable at A (fig. 1) determine (i) tension in the cable (ii) The reaction at C	1
(b)	Define shear force and bending moment. Derive the relation between load, shear force and bending moment.	2
(c)	Determine the mass moment of inertia of cone about its central axis. Take mass of cone as M and radius as R.	3
(d)	A long rod AB is supported at the upper edge of a wall of height 1.5 m and on a horizontal floor as shown in fig. 2. If the lower end of the rod moves with a velocity $\mathrm{V}_{\mathrm{A}}=2 \mathrm{~m} / \mathrm{s}$ sind the velocity of the contact point C of the rod and the angular velocity of the rod, when the rod is 60° to the horizontal.	4

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

\square

BTECH

(SEM IV) THEORY EXAMINATION 2021-22

ENGINEERING MECHANICS

	 Fig. 2	
(e)	A timber beam 15 cm wide and 20 cm deep carries a uniformly distributed load over a span of 4 m and is simply supported. If the permissible stress is 30 $\mathrm{N} / \mathrm{mm}^{2}$ calculate the maximum load which can be carried by the timber beam.	5

SECTION C

3. Attempt any one part of the following:
$10 \times 1=10$

Qno	Questions	CO
(a)	State and prove Varignon's theorem also list the applications of Varignon's theorem	1
(b)	A 15^{0} wedge of negligible weight is to be driven to tighten a body B which is supporting a vertical load of 1000 N . If the coefficient of friction for all surfaces of contact is to be 0.25. Find minimum force P required to drive the wedge shown in fig.3.	1

4. Attempt any ne part of the following:
$10 \times 1=10$

Qno	Questions	CO
(a)	Find out forces in all the members of given truss shown in fig. 4. Fig. 4	2
(b)	Draw the SFD and BMD for the beam shown in fig. 5 Fig. 5	2

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

Roll No: \square

BTECH

(SEM IV) THEORY EXAMINATION 2021-22

ENGINEERING MECHANICS

5.

Attem	pt any one part of the following: 10x1	$=10$
Qno	Questions	CO
(a)	Determine ratio of a to r for which the centroid of the area is located at point B shown in fig. 6. Fig. 6	3
(b)	Find the moment of inertia of shaded area shown in fig. 7 about centroidal x axis and also about axis AB. Fig. 7	3

6.

Attempt any one part of $\mathbf{1 0 x 1 = 1 0}$

Qno following:	Questions	CO
(a)	A train starts om rest and moves along a curved track of radius 750 m with a uniform a celeration until it attains a velocity of $80 \mathrm{~km} / \mathrm{hr}$ at the end of third minute train at the end of second minute.	4
(b)	Two blocks weighing 100 N and 40 N are supported at the ends of a rope of negligible weight which is passing over the rough surface of a pulley mounted on a horizontal axle. The pulley may be assumed as a solid disc with a weight of 50 N . Friction in the bearings of the pulley may be neglected. Find the tension on the two parts of the two rope and the linear acceleration of the blocks.	4

7. Attempt any one part of the following:
$10 \times 1=10$

Qno	Questions	CO
(a)	The modulus of rigidity of a material is $24.8 \mathrm{kN} / \mathrm{mm}^{2} . \mathrm{A} 10 \mathrm{~mm}$ diameter rod of the material is subjected to an axial tensile force of 5 kN and change in its diameter is observed to be 0.0032 mm. Calculate Poisson's ratio and modulus of elasticity of the material.	5
(b)	Derive the pure torsion equation where symbols has usual meaning J	$\mathrm{T}=\frac{\tau}{\mathrm{R}}=\frac{\mathrm{G} \Theta}{\mathrm{L}}$

